

Subject	: Mathematics	Topic : Revision	Date of We	orksheet :8/6	5/2017
Resource Person: Sunitha Rajeev Date of submission:7/8/202					8/2017
Name of the Student :		Class & Division : XI	& Division : XI Roll Number :		
S.NO		Quest	tions		Marks
1.	If $A = \{x : x \text{ is a natural} \}$	al number}			1
	$B = \{x : x \text{ is an even}\}$	natural number}			
	$C = \{x : x \text{ is an odd}\}$	natural number}			
	$D = \{x : x \text{ is a prime}\}$	number}			
	Find i) $A \cap B$	ii) C ∩ D.			
2	Are the following pa	ir of sets equal			1
2.	$A = \{2, 3\}, B = \{x:$	x is solution of $x^2 + 3$	5x + 6 = 0		
)		
3.	In a survey of 25 stu	dents it was found th	nat 15 had taken Mathemat	tics. 12 had	4
	taken Physics and 11	L had taken Chemistr	y, 15 had taken Chemistry	and	
	Mathematics, 9 had	taken mathematics	and physics, 4 had taken Ph	iysics and	
	Chemistry and 3 had	taken all the three s	subjects.		
	Find the number of	Students who had ta	iken:		
	(a) Only Chemistry	/ tics			
	(c) Only one of the	e Subiects.			
	(d)				
4.	Write the set $\left\{\frac{1}{3}, \frac{3}{5}\right\}$	$\left(\frac{5}{7}, \frac{7}{9}, \frac{9}{11}, \frac{11}{13}\right)$ in set	builder form.		1
5.	If U = $\{1, 2, 3, 4, 5, 6, \dots\}$	7}, A = $\{2, 4, 6\}$ and	$B = \{3, 5\}$ and $C = \{1, 2, 4, 7\}$	/}determine	4
	the following sets;			, ,	
	i) A U (B 🎧 C')	ii) (B – A) U (A	– C)		
	ii)				
6.	In a town of 10000 f	amilies, it was found	that 40% families buy new	spaper A,	6
	20% families buy ne	wspaper B, 10% fami	lies buy newspaper C, 5% f	amilies buy	
	newspaper A and B,	3% families buy new	spaper B and C and 4% fam	illies buy	
	number of families v	which huy	in the three newspapers. D		
	i) Newspaper A	Nonly			
	ii) Bonly				
	iii) A and B but r	not C			
	iv) None A, B an	d C.			
7.	Draw a Venn – diagr	am to represent the	sets A – B and B – A.		1

8.	Prove by the principle of Mathematical Induction that $1.2 + 2.3 + 3.4 + \dots = n (n + 1) = \frac{n(n+1)(n+2)}{3}$	4
9.	Using Principle of Mathematical Induction prove that: $1.3 + 2.4 + 3.5 + \dots = n \cdot (n + 2) = \frac{n \cdot (n+1)(2n+7)}{E}$	3
10.	Prove by Induction that the sum $S_n = n^3 + 3n^2 + 5n + 3$ is divisible by 3 for all $n \in \mathbb{N}$	4
11.	By using Principle of Mathematical Induction prove the following for all $n \in N$:	4
	$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4} + \dots + \frac{1}{1+2+3+4+\dots+n} = \frac{2n}{n+1}$	
12.	By using Principle of Mathematical Induction prove the following for all $n \in N$:	6
13.	$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{3}{3n+1}$ Prove the following by the principle of mathematical induction:	6
	$\frac{1}{1\times 5} + \frac{1}{5\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}, \forall n \in \mathbb{N}.$	
14.	Prove by the principle of Mathematical Induction that $x^{2n} - y^{2n}$ is divisible by x + y.	4
15.	Evaluate Sin $\left[-\frac{11\pi}{3}\right]$	6
16.	Find the degree measure of the angle subtended at the centre of a circle of radius 100cm by an arc of length 22cm. (use $f = 22/7$) (Express the answer in degree and minutes).	6
17.	If tan $x = \frac{-5}{12}$, x lies in the second quadrant; find Sec x.	1
18.	Find the values of cos " and tan ", if sin " = $\frac{-3}{5}$ and $w < " < \frac{3}{2}$	1
19.	Prove that sin (- 420°) + cos (- 660°) sin (330°) = - 1	4
20.	If A, B, C are in A.P, then prove that $\frac{\sin A - \sin C}{\cos C - \cos A} = \cot B$	4
21.	If $\tan x = \frac{3}{4}$, $\pi < x < \frac{3\pi}{2}$, find the value of $\sin \frac{\pi}{2}$, $\cos \frac{\pi}{2}$ and $\tan \frac{\pi}{2}$	3
22.	Prove that $\cos^2 x + \cos^2 (x + \frac{2\pi}{3}) = \frac{3}{2}$	3

23.	Prove that i) $\tan 4x = \frac{4 \tan x (1 + \tan^2 x)}{1 - 6 \tan^2 x + \tan^4 x}$	3
24	$(\cos \theta + \cos \phi)^2 + (\sin \theta - \sin \phi)^2 = 4\cos^2 \frac{\theta + \phi}{2}$	3
25	Find the principal solutions of the equation 2 $\sin^2 \theta = 3 \cos \theta$	4
26	Find the slope and y – intercept of the line whose equation is $2x + 4y - 7 = 0$.	1
27	Find the equations of the straight lines passing through the point (3, 2) which makes an angle 45° with the line $x - 2y = 3$.	6
28	Find the value of k for which the line $(k - 3) x - (4 - k^2)y + k^2 - 7k + 6 = 0$ is parallel to the y-axis.	1
29	Find the distance between the parallel lines $3x - 4y + 7 = 0$ and $3x - 4y + 5 = 0$.	1
30	 i) Find the value of x for which the points (x, 1), (2, 1) and (4,5) are collinear. ii) Find the point on the x – axis, which is equidistant from the points (7, 6) and (3, 4). 	4
31	Find the equation of a line drawn perpendicular to the line $\frac{\pi}{4} + \frac{y}{2} = 1$ through the point where it meets y – axis.	4
32	Find the distance of the point (2 , 3) from the line $2x - 3y + 9 = 0$ measured along a line $x - y + 1 = 0$.	4
33	In triangle ABC with vertices A $(1, 2)$, b $(4, 5)$ and C $(0, -3)$. Find the equation of the perpendicular from A to BC.	4
34	Find the equation of the lines through the point (3 , 2) which makes an angle of 45° with the line x – 2y = 3.	4
35	Find the distance of the point (2 , 3) from the line $2x - 3y + 9 = 0$ measured along a line $x - y + 1 = 0$.	4
36	In triangle ABC with vertices A (1 , 2), B (4 , 5), C (0 , -3). Find the equation of the perpendicular from A to BC.	4
37	If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta - y \sin \theta = k \cos 2 \theta$ and $x \sec \theta + y \csc \theta = k$ respectively, prove that $p^2 + 4q^2 = k^2$.	6

38	Find the image of the point (3 , 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.	6
39	Determine the point in XY plane which is equidistant from three points A(2 , 0, 3), b (0 , 3 , 2) and C (0, 0, 1).	4
40	Find the ratio in which the line segment joining the points (1, 2, 3) and (-3, 4, 5) is divided by xy plane. Also find the coordinate of the point of division.	4
41	The centroid of a triangle with vertices (-2, 1, 3), (-2, a, -5) and (4 , 7, b) is origin. Find value of a and b.	1
42	The vertices of a triangle are A (0, 7, 10), B (-1, 6, 6) and C(-4, 9, 6). Show that ABC is an isosceles right angled triangle.	1
43	Write the domain and range of signum function	1
44	Determine the domain and range a) $f(x)=\sqrt{16-x^2}$ b) $f(x) = - x $	4
45	A relation R is defined on the set Z of integers as follows: $(x,y) \in R$ if and only if $x^2 + y^2 = 25$ Express R as set of ordered pairs and hence find the domain.	1
46	Let A = $[x, y, z]$ and B= $\{1, 2\}$. Find the number of relations from A to B.	1
47	If $f(x) = x^2 + x - 1$ and $g(x) = 4x - 7$ be real valued functions then find: (f+g)(2),(f -g)(7),fg(-5) and f/g (4)	4
48	Solve $5x - 3 < 3x + 1$ when x is a real number	1
49	Solve the following system of inequalities graphically: $x + 2y \le 8$, $x + y \ge 4$, $x - y \le 0$, $x \ge 0$, $y \ge 0$	6
50	Solve graphically: 3x + 2y ≤150, x + 4y≤80, x≤15, x ≥0	6