MARKING SCHEME – SET II

SECTION – A

1.	$a^{5}b^{5}$.	(1 Mark)
2.	Ans : $\frac{34}{9}$	(1 Mark)
3.	No	(1mark)
4.	Ans: $\sqrt{a^2 + b^2}$	(1 Mark)
5.	Ans: 7.2 cm	(1 Mark)
6.	Ans : $A + 25 + B = 90$	
	A + B = 65	(1 Mark)

SECTION – B

7.	Ans:	
	$11(7 \times 13 + 1)$	(1mark)
	Yes, It is expressed as a product of two factors	(1mark)

8. Ans:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} ; \frac{3}{2k-1} = \frac{1}{k-1} \neq \frac{1}{2k+1}$$

k=2 and k \ne - $\frac{1}{2} \Rightarrow$ k=2

9. Ans:

Sol:

In A.P the first term = a and common difference = d. Given that 9th term of an A.P. is 0. Therefore $t_9 = 0$ $\Rightarrow a + 8d = 0 \Rightarrow a = -8d$ ------(1) 1/2 mark We have to prove that $t_{29} = 2 t_{19}$. $t_{19} = a + 18d = -8d + 18d = 10d$ [from (1)] 1/2 mark $t_{29} = a + 28d = -8d + 28d = 20d$ [from (1)] 1/2 mark $t_{29} = 2 \times 10d = 2 \times t_{19}$ $\therefore t_{29} = 2 \times t_{19}$. 1/2 mark

10. Ans: Let th

Let the ratio be k:1

$$3\left(\frac{4k+2}{k+1}\right) + 2\left(\frac{7k+1}{k+1}\right) = 10$$
(1mark)

$$26k - 10k = 10 - 8$$
($\frac{1}{2}$ mark)
Then the ratio is 1:8
($\frac{1}{2}$ mark)

1

1

11. Ans:

(i) Number of ways in which two dice can be thrown at the same time = 36 Multiple of 3 as the sum (1,3), (1,6), (2,3), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,3), (4,6), (5,3), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) $p(getting \ a \ multiple \ of \ 3 \ as \ sum) = \frac{20}{36} = \frac{5}{9}$ (1mark) (ii) 6 as the product (1,6), (2,3), (3,2), (6,1) $P(6 \ as \ the \ product) = \frac{4}{36} = \frac{1}{9}$ (1 mark) 12. Ans: Let x be number of green balls $p(x) = \frac{2}{3}$ ($\frac{1}{2} \ mark$)

$$\frac{x}{24} = \frac{2}{3}, x = 16$$
 (1 mark)

So, number of blue balls = 24 - 16 = 8. $(\frac{1}{2} mark)$

SECTION -C

Let us suppose that
$$\sqrt{6} + \sqrt{2}$$
 is rational
Then $\sqrt{6} + \sqrt{2} = \frac{a}{b}$ where a and b are integers
 $8 + 2\sqrt{12} = \frac{a^2}{b^2}$
 $8 + 4\sqrt{3} = \frac{a^2}{b^2}$
 $\frac{1}{2}$

$$\sqrt{3} = \frac{\frac{a^2}{b^2} - 8}{4}$$

∴ a, b and 6 are integers then
$$\frac{\frac{a^2}{b^2} - 8}{4}$$
 is rational

$$\Rightarrow \sqrt{3} = \text{rational}$$

But we know that $\sqrt{3}$ is irrational
$$\Rightarrow \text{ irrational} = \text{ rational which is a contradiction}$$

Hence $\sqrt{6} + \sqrt{2}$ is irrational.

$$x = 2 \pm \sqrt{3} \text{ are the zeroes of } p(x), \text{ so}$$

$$x - (2 \pm \sqrt{3}) \text{ are the factors of } p(x).$$
Now, $\left\{ x - (2 + \sqrt{3}) \right\} \left\{ x - (2 - \sqrt{3}) \right\}$

$$= \left\{ (x - 2) - \sqrt{3} \right\} \left\{ (x - 2) + \sqrt{3} \right\}$$

$$= \left(x - 2 \right)^2 - (\sqrt{3})^2$$

$$= x^2 - 4x + 1 \qquad 1 \text{ mark}$$

Dividing p(x) by $x^2 - 4x + 1$

$$\frac{x^{2}-2x-35}{x^{2}-4x+1)x^{4}-6x^{3}-26x^{2}+138x-35}}$$

$$\frac{x^{4}-4x^{3}+x^{2}}{-4x^{3}+x^{2}}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+138x}{-2x^{3}+8x^{2}-2x}$$

$$\frac{-4x^{3}-27x^{2}+140x-35}{-35x^{2}+140x-35}$$

$$\frac{-4x^{3}-2x^{3}+4x^{2}-2x}{-4x^{3}+x^{2}-2x}$$

$$\frac{-4x^{3}-2x^{2}+140x-35}{-35x^{2}+140x-35}$$

$$\frac{-4x^{3}-2x^{3}+4x^{2}-2x}{-4x^{3}+x^{2}-2x}$$

$$\frac{-4x^{3}-4x^{3}+x^{2}-2x}{-4x^{3}+x^{2}-2x}$$

$$\frac{-4x^{3}-4x^{3}-2x^{3}+x^{2}-2x}{-4x^{3}+x^{2}-2x}$$

$$\frac{-4x^{3}-4x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}-2x^{3}+x^{3}$$

$$x^2 - 2x - 35 = (x - 7)(x + 5)$$

Zeroes are 7,-5, 2 $\pm \sqrt{3}$

(1 mark)

15.

Ans: The line $y = 4$	$(\frac{1}{2} marks)$
The line $2x + y = 6$, points (0,6) and (3,0)	(1 marks)
The vertices are (0,0),(3,0),(1,4) and (0,4)	$(\frac{1}{2} marks)$
Area = $\frac{1}{2} \times 4(1+7) = 16$ square units	(1 mark)

16. Show that the points (-4, -1), (-2, -4), (4,0) and (2,3) are the vertices of a rectangle.

$AB = \sqrt{13}$ units	$(\frac{1}{2} marks)$
BC = $\sqrt{52}$ units	$(\frac{1}{2} marks)$
$CD = \sqrt{13}$ units	$(\frac{1}{2} marks)$
$DA = \sqrt{52}$ units	$(\frac{1}{2} marks)$
$AC = \sqrt{65}$ units	$(\frac{1}{2} marks)$
BD = $\sqrt{65}$ units	$(\frac{1}{2} marks)$

Ans:

$$(x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2$$
 1 mark
 $x^2 - 14x + 49 + y^2 - 2y + 1 = x^2 - 6x + 9 + y^2 - 10y + 25$ 1 mark

$$x - y - 2 = 0 1 mark$$

17.

Ans:

	А	В
Given: ABCD is a trape	ezium with	
AB II CD		\
and diagonals AB & C	D intersecting at O	
<u>To prove</u> : $\frac{OA}{OC} = \frac{OB}{OD}$	D	C
<u>Proof</u> : In ΔOAB and Δ	OCD	
$\angle AOB = \angle DOC$	(Vertically opposite angles)	1 mark
$\angle ABO = \angle CDO$	(since AB II CD with BD as traversal, alternate angle are equal	
$\Delta OAB \sim \Delta OCD$	(AA Similarity)	1 mark

We know that If 2 triangles are similar ,

their corresponding sides are in proportion

Hence

OA	OB	1 mark
OC -	OD	
Hence	e proved	

OR

In Δ ADB			
$AB^2 = BD^2 + AD^2$		(Pythagoras theorem)	-
$\Rightarrow AD^2 = AB^2 - BD^2$	_	(1)	1
Also in Δ ADC			
$AC^2 = CD^2 + AD^2$		(Pythagoras theorem)	1
$\Rightarrow AD^2 = AC^2 - CD^2$	_	(2)	
From (1) and (2)			
$AB^2 - BD^2 = AC^2 - CD^2$			1
$\Rightarrow AB^2 + CD^2 = BD^2 + AC^2$			1

Ans:

Given:A circle with center O.Tangents PA and PB drawn from external point PTo prove: $\angle APB + \angle AOB = 180^{\circ}$ Proof:1/2 mark

Since PA is tangent				
OA ⊥ PA	(Tangent at any point of circle is perpendicular to the radius			
$OB \perp PB$				
$\therefore \angle OAP = 90^{\circ} \therefore \angle OBP =$: 90° 1 mark			
In quadrilateral OAPB				
$\angle OAP + \angle APB + \angle OBP + \angle A$	OB = 360°	(Angle sum property of quadrilateral)		
Putting values of angles		1 mark		
90° + ∠ APB + 90° + ∠ AOB = 3	60°			
180° + ∠ APB + ∠ AOB = 360°				
∠ APB + ∠ AOB = 360° – 180°				
\angle APB + \angle AOB = 180°		1/2 mark		
Hence proved				

$$LHS \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}}$$

$$\frac{1/2 \text{ mark}}{1/2 \text{ mark}}$$

$$\frac{\frac{\sin A \times \sin A}{\cos A (\sin A - \cos A)} + \frac{\cos A \times \cos A}{\sin A (\cos A - \sin A)}$$

$$\frac{\sin^2 A}{\cos A (\sin A - \cos A)} - \frac{\cos^2 A}{\sin A (\sin A - \cos A)}$$

$$\frac{\sin^3 A - \cos^3 A}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{(\sin A - \cos^3 A)}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{(\sin A - \cos A)}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{1 \text{ mark}}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{1 + \cos A \sin A}{\sin A \cos A} = \frac{1}{\sin A \cos A} + 1$$

$$\frac{1/2 \text{ mark}}{1/2 \text{ mark}}$$

$$= \sec A \csc A + 1 - \text{RHS}$$

OR

Evaluate :

Evaluate :

$$\sec^{2}10^{\circ} - \cot^{2}80^{\circ} - \frac{\sin 15^{\circ} \cos 75^{\circ} + \cos 15^{\circ} \sin 75^{\circ}}{\cos \theta \sin(90^{\circ} - \theta) + \sin \theta \cos(90^{\circ} - \theta)} - \tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \tan 70^{\circ} \tan 80^{\circ}$$
Ans:

$$\sec (10^{\circ}) = \csc 80^{\circ}, \sin (15^{\circ}) = \cos 75^{\circ}$$

$$\csc^{2}\theta = 1 + \cot^{2}\theta, \cot (90 - \theta) = \tan\theta$$

$$\sec^{2}10^{\circ} - \cot^{2}80^{\circ} - \frac{\sin 15^{\circ} \sin 15^{\circ} + \cos 15^{\circ} \cos 15^{\circ}}{\cos^{2}\theta + \sin^{2}\theta} - \tan 10^{\circ} \tan 20^{\circ} \times \frac{1}{\sqrt{3}} \times \cot 20^{\circ} \cot 1$$

$$10^{\circ}$$

$$\csc^{2}80^{\circ} - \cot^{2}80^{\circ} - 1 - \frac{1}{\sqrt{3}}$$

$$1 - 1 - \frac{1}{\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

$$1$$

Ans:1
$$2(sector area - triangle area)$$
1 $2(\frac{1}{4} \times \frac{22}{7} \times 8^2 - \frac{1}{2} \times 8 \times 8)$ 1 $\frac{256}{7}$ sq. cm1

Let us mark the four unshaded regions as I, II, III and IV (see Fig.).

Area of I + Area of III

= Area of ABCD - Areas of two semicircles of each of radius 5 cm 1/2 mark

$$= \left(10 \times 10 - 2 \times \frac{1}{2} \times \pi \times 5^{2}\right) \text{cm}^{2} = (100 - 3.14 \times 25) \text{ cm}^{2}$$

= (100 - 78.5) cm² = 21.5 cm² 1 mark
Similarly, Area of II + Area of IV = 21.5 cm² 1/2 mark
So, area of the shaded design = Area of ABCD - Area of (I + II + III + IV)
= (100 - 2 \times 21.5) cm² = (100 - 43) cm² = 57 cm² 1 mark

21.

....

Let R be the radius, and h be the height of the cylindrical portion.	
Height of the building, R+h = 2R = D = internal diameter.	1/2 mark
This gives, h = R.	
Volume = Volume of cylindrical portion + Volume of hemispherical port	tion 1/2 mark
$=\pi R^{2}h + (4\pi R^{3}/3)/2 = 880/21$	
(22/7)(R ² h + 2R ³ /3) = 880/21	
$R^{2}(h+2R/3) = 440/3$	
R ² (R+2R/3) = 440/3	
R ³ (5/3) = 440/3	
R ³ = 88	1 mark
R = 4.45 m	1/2 mark
and Total Height of the building, = R+h = 2R = 8.9 m	1/2 mark

22.

Ans :

Correct table	(1 mark)
Correct graph	(1 mark)
Median = 138	(1 mark)

SECTION – D

23. Ans:

The time taken to fill a cistern by smaller pipe = x minutes Work done by smaller pipe in 1 minute = $\frac{1}{x}$ The time taken to fill a cistern by larger pipe = x-3 minutes Work done by larger pipe in 1 minute = $\frac{1}{x-3}$

The total time taken by both the pipes together to fill the cistern = $3\frac{1}{13} = \frac{40}{13}$ minutes Work done by both in 1 minute = $\frac{13}{40}$

According to the problem, $\frac{1}{x} + \frac{1}{x-3} = \frac{13}{40}$ 1 mark $13x^2 - 119x + 120 = 0$ $\frac{1}{2} mark$ $b^2 - 4ac = 7921$ $\sqrt{7921} = 89$ $x = \frac{-(-119)\pm 89}{26} = 8 \text{ or } \frac{30}{26}$ 1 mark Rejecting $x = \frac{30}{26}$ (since less than 3) Hence, the larger pipe takes 8 - 3 = 5 minutes smaller pipe takes x = 8 minuts (1 mark)

OR

Let the speed of the stream be x km/hr	
$\frac{12}{11-x} + \frac{12}{11+x} = \frac{11}{4}$	1 mark
$x^2 - 121 + 96 = 0$	$1\frac{1}{2}$ marks
$x \neq -5$, $x = 5$	1 mark
speed of stream = $5 km/h$	$\frac{1}{2}$ mark

24. Ans: (a) No

Ans:

a)	Numbe	er of trees j	planted	by cl	lass I	= 3		
	Numbe	er of trees	planted	by c	lass l	I = 3	$\times 2 = 6$	

Number of trees planted by class III = $3 \times 3 = 9$

Number of trees planted by class XII = $12 \times 3 = 36$

(2 marks)

The number of trees form an A.P

. . .

i.e 3,6,9,12,..., 36, n = 12 $S_n = \frac{12}{2}(3+36) = 234$ (1mark)

Hence the total number of trees that will be planted by the students is 234.

(b) Yes. Planting more trees helps in reducing pollution and thus, make environment clean and green. (1 mark)

25.

Ans:	
Given, To prove, Diagram, Construction	1 mark
Correct Proof	3 marks

26.

Ans:

Construction of triangle ABC	1 mark
Construction of similar triangle	3 marks

$$LHS \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}}$$

$$\frac{\sin A \times \sin A}{\cos A (\sin A - \cos A)} + \frac{\cos A \times \cos A}{\sin A (\cos A - \sin A)}$$

$$\frac{\sin^2 A}{\cos A (\sin A - \cos A)} - \frac{\cos^2 A}{\sin A (\sin A - \cos A)}$$

$$\frac{\sin^3 A - \cos^3 A}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{(\sin A - \cos^3 A)}{\sin A \cos A (\sin A - \cos A)}$$

$$\frac{(\sin A - \cos A)}{\sin A \cos A (\sin A - \cos A)}$$

$$1 \text{ mark}$$

$$\frac{(\sin A - \cos A)}{\sin A \cos A (\sin A - \cos A)}$$

$$1 \text{ mark}$$

$$\frac{1 + \cos A \sin A}{\sin A \cos A} = \frac{1}{\sin A \cos A} + 1$$

$$1 \text{ mark}$$

$$= \sec A \csc A + 1 - \text{RHS}$$

Let BD = 60 m be the height of the building.

Let A nd E the top and bottom position of the light house.

Let h be the difference of heights of the building and the light house.

Let x be the distance between light house and the building.

Consider the triangle ABC

In $\triangle ABC$, $BC = \sqrt{3}h$	(1 Mark)
In $\triangle BCRE$, $BC = \frac{60}{\sqrt{3}}$	(1 Mark)
h = 20 m	(1 Mark)
BC = $20\sqrt{3}$ m	$(\frac{1}{2} Marks)$
Difference between the height $= 20 \text{ m}$	
distance between them = $20\sqrt{3}$	$\frac{1}{2}$ marks

OR

$\sqrt{3} = \frac{60+60+H}{\sqrt{3}H} = \frac{120+H}{\sqrt{3}H}$	1 mark	
⇒ 120 + H = 3H		
⇒ 2H = 120		
⇒ H = 60 m	1 mark	
Thus, height of the cloud from the	surface of the lake = AB + A'B = 60 + 60 = 120 m.	1 mark

29. Ans:	
$l = 31.62 \ cm$	1 mark
$S.A = 3295.6 \ cm^2$	1 mark
Volume = $22000 \ cm^3$	1 mark
Cost of milk = Rs: 550	1 mark

30.

Marks	Frequency	x _i	$u_i = \frac{x_i - 67.5}{5}$	$f_i u_i$
50-55	5	52.5	-3	-15
55-60	8	57.5	-2	-16
60-65	15	62.5	-1	-15
65-70	11	67.5	0	0
70-75	7	72.5	1	7
75-80	4	77.5	2	8
	50			-31

(2 Marks)

$$\bar{u} = \frac{-31}{50}$$
$$\bar{x} = a + h\bar{u} = 64.4$$

(2 Marks)

x _i	Number of	$u_{i} = \frac{x_{i} - 45}{2}$	$f_i u_i$
	Workers	$u_l = 10$	
5	5	-4	-20
15	7	-3	-21
25	f_1	-2	$-2f_1$
35	3	-1	-3
45	f_2	0	0
55	9	1	9
65	6	2	12
Total	$30 + f_1 + f_2$		$-23-2f_1$

(1 Mark)

$f_1 + f_2 = 70$	(1 mark)
$f_1 = 20$	(1 mark)
$f_2 = 50$	(1 mark)